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Abstract

This paper presents an exact solution for fully developing forced convective flow in parallel-plate horizontal porous

channels with an anisotropic permeability whose principal axes are oriented in a direction that is oblique to the gravity

vector. A constant heat flux is applied on the channel side walls. Basing this analysis on the generalized Brinkman-

extended Darcy model which allows the satisfaction of the no-slip boundary condition on solid wall, it is found that

anisotropic parameters K� and u have a strong influence on the flow fields and heat transfer rate, in the limiting case of
low porosity media ðDa ! 0Þ. The results indicate that a maximum (minimum) heat transfer rate is reached when the
orientation of the principal axis with higher permeability of the anisotropic porous matrix is parallel (perpendicular) to

the vertical direction. � 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Convective heat transfer in porous media has received

increasing interest over the last 20 years, due its numer-

ous applications in geophysics and energy-related sys-

tems. Convection in ducted flow may occur in many

applications, such as heat exchangers, chemical pro-

cessing equipment, transport of heated or cooled fluids,

solar collectors and micro-electronic cooling. Buoyancy

effects distort the velocity and temperature profiles rel-

ative to the forced convection case. This phenomenon is

of substantial significance because it may strongly affect

wall friction, pressure drop, heat transfer, occurrence of

extreme temperatures and stability of the flow.

In channel flow, enhancement of heat transfer by

insertion of solid matrices has been analyzed [1,2] and

studied experimentally [3] for relatively low permeabili-

ties. In treating these flows, uniform velocity is generally

assumed across the channel. However, for relatively

high porosities and permeabilities (which are desirable

for pressure drop consideration), a non-uniform veloc-

ity distribution is expected near the wall. This affects

the heat transfer rate from or to the walls. Kaviany

[4] tudied laminar convective flow through a porous

channel bounded by two parallel plates maintained at a

constant and equal temperature. On the basis of the

modified Darcy model for transport of momentum, this

author has demonstrated that the Nusselt number for

fully developed fields increases with an increase of the

porous media shape parameter. Nakayama et al. [5]

extended Kaviany’s analysis to the case of constant heat

flux specified to the walls, employing the Brinkman-

extended Darcy model, to study the effect of the bound-

ary viscous frictional drag on hydrodynamic and heat

transfer characteristics. Recently, Haajizadeh and Tien

[6] have investigated combined natural and forced con-

vective flows through a horizontal porous channel con-

necting two reservoirs and found that a small rate of

throughflow has a significant effect on the temperature

distribution and the heat transfer across the channel.

So far, theoretical and experimental investigations on

the topic have usually been concerned with isotropic

porous media. However, in several applications the po-

rous materials are anisotropic. The inclusion of more

physical realism in the matrix properties of the medium

International Journal of Heat and Mass Transfer 45 (2002) 3181–3188
www.elsevier.com/locate/ijhmt

*Corresponding author. Tel.: +229-955-251; fax: +229-360-

199.

E-mail address: gdegan@syfed.bj.refer.org (G. Degan).

0017-9310/02/$ - see front matter � 2002 Elsevier Science Ltd. All rights reserved.

PII: S0017-9310 (02 )00032-7



is important for the accurate modeling of the anisotropic

media. Anisotropy, which is generally a consequence of

a preferential orientation or asymmetric geometry of the

grain or fibers, is in fact encountered in numerous sys-

tems in industry and nature. Example include fibrous

materials, geological formations, oil extraction, some

biological materials, and dendritic regions formed dur-

ing solidification of binary alloys. Despite its broad

range of applications, convection in such anisotropic

porous media has received relatively little attention. The

first study of natural convection in anisotropic porous

channels with principal axes of permeability coincident

with the gravity vector seems to be that by Nilsen and

Storesletten [7]. Assuming that the horizontal channel

walls are impermeable and non-uniformly heated to es-

tablish a linear temperature distribution, critical Ray-

leigh numbers were derived for the onset of convection

and the influence of anisotropic permeability are seen

significant. Recently, Degan and Vasseur [8] conducted

an analytical study on the aiding convection in parallel

vertical porous channels with an anisotropic perme-

ability whose principal axes are oriented in a direction

which is oblique to the gravity vector. Using the gener-

alized Brinkman-extended Darcy model which allows

the no-slip boundary condition on solid wall, to be

satisfied, both flow reversal and limiting cases of low and

high porosity media for natural and forced convection

are considered to demonstrate the influence of the an-

isotropy on the flow and heat transfer characteristics.

The aim of the present analysis is to study forced

convective flows in parallel-plate horizontal porous

channels with an anisotropic permeability whose prin-

cipal axes are arbitrary oriented, as it is seen in nature

and for many realistic applications. The convective flow

is induced by two horizontal bounding walls heated by a

constant heat flux. On the basis of the generalized

Brinkman-extended Darcy model, the effects of aniso-

tropic parameters of the porous matrix on velocity and

temperature fields and heat transfer rate are investigated

in detail.

2. Mathematical formulation and resolution

The physical model illustrating the problem consid-

ered here in Fig. 1 consists of a two-dimensional hori-

zontal parallel-plate porous channel of height 2h, whose
the upper and lower plates are impermeable and heated

by a constant heat flux qw ¼ koT 0=oy0. The axial and

Nomenclature

a; c constants, Eq. (9)

Da Darcy number, K1=h2

f wall friction factor, sw=ð1=2.u2Þ
h half channel height

k thermal conductivity

K flow permeability tensor, Eq. (4)

K1;K2 flow permeability along the principal axes

K� anisotropic permeability ratio, K1=K2
p0 fluid thermodynamic pressure

qw wall uniform heat flux

Nu Nusselt number, Eq. (32)

Re Reynolds number, uh=m
T 0 fluid temperature

DT temperature scale, qwh=k
~VV seepage velocity

u; v dimensionless velocity components in x, y

directions

u average velocity

x dimensionless horizontal coordinate

y dimensionless vertical coordinate

Greek symbols

a constant, Eq. (18)

b thermal expansion coefficient of the fluid

h dimensionless temperature profile

u inclination of the principal axis

l dynamic viscosity of the fluid

m kinematic viscosity of the fluid

k relative viscosity, leff=l
. density of the fluid

ð.cÞf heat capacity of the fluid

sw wall shear stress

Superscript
0 dimensional quantities

Subscripts

m refers to bulk mean

w refers to wall

Fig. 1. Physical situation and coordinate system.
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transverse coordinates are respectively x0 and y0, the
latter being measured vertically upwards from the chan-

nel centerline. The porous medium is anisotropic in flow

permeability, the permeabilities along the two principal

axes of the porous matrix are denoted by K1 and K2. The
anisotropy of the porous medium is characterized by the

permeability ratio K� ¼ K1=K2 and the orientation angle
u, defined as the angle between the horizontal direction
and the principal axis with the permeability K2. The
porous medium is saturated with an incompressible

viscous fluid that is in local thermodynamic equilibrium

with the solid matrix.

Under the above approximations, the equations

governing the conservation of mass, momentum and

energy (for steady forced convective flow) in an aniso-

tropic porous medium can be written as follows [9,10]:

r � ~VV 0 ¼ 0; ð1Þ

~VV 0 ¼ K
l

�
	rp0 þ leffr2~VV 0

�
; ð2Þ

ð.cÞfr � ð~VV 0T 0Þ ¼ kr2T 0; ð3Þ

where ~VV 0 is the superficial flow velocity, T 0 the temper-

ature, ð.cÞf the heat capacity of the fluid, l the dynamic
viscosity, p0 the pressure, leff apparent dynamic viscosity
for Brinkman’s model, k the thermal conductivity, . the
density. The symmetrical second-order permeability ten-

sor K is defined as

K ¼ K1 sin
2 u þ K2 cos2 u ðK2 	 K1Þ sinu cosu

ðK2 	 K1Þ sinu cosu K2 sin
2 u þ K1 cos2 u

� �
:

ð4Þ

Assuming that when the flow is fully developed in the

channel, the axial ðx0-directionÞ velocity depends on the
transverse coordinate y0 (i.e., u0 ¼ u0ðy0ÞÞ and then from
the continuity equation, the transverse velocity compo-

nent must be zero ðv0 ¼ 0Þ. The temperature is assumed
to be a function of x0 plus a function of y0. No as-
sumptions are made with regard to the pressure varia-

tion (which, in fact, is not found to be a linear function

of x0 as it is often assumed). So, governing equations (1)–
(3) may be reduced as

du0

dx0
¼ 0; ð5Þ

0 ¼ 	 op0

ox0
þ leff

d2u0

dy02
	 l
K1

au0; ð6Þ

0 ¼ 	 op0

oy0
þ l
K1

cu0; ð7Þ

u0
oT 0

oy0
¼ k

ð.cpÞf
o2T 0

oy02
; ð8Þ

where

a ¼ sin2 u þ K� cos2 u; c ¼ 1
2
ð1	 K�Þ sin 2u: ð9Þ

Since the velocity and temperature fields are sym-

metric about the channel centerline, only the upper half

of the duct will be taken in consideration. The appro-

priate boundary conditions prevailing for previous gov-

erning equations (5)–(8) are

y0 ¼ 0 : du0

dy0
¼ 0; oT 0

oy0
¼ 0; ð10Þ

y0 ¼ h : u0 ¼ 0; oT 0

oy0
¼ qw

k
: ð11Þ

Upon integrating the energy equation (8) once over

the range 06 y0 6 h, one can have

u0m
dT 0

m

dx0
¼ 1

ð.cpÞf
qw
h
; ð12Þ

where u0m and T
0
m are the fluid bulk mean velocity and the

fluid mean temperature, respectively. The foregoing

equation may be used to eliminate oT 0=ox0 ¼ ðdT 0
m=dx

0Þ
from Eq. (8) to give

u0

u0m
¼ kh

qw

o2T 0

oy02
: ð13Þ

Taking hRe (and hÞ, u, ð.u2Þ and DT ¼ qwh=k as re-
spective dimensional scales for length x0 (and y 0), veloc-
ities, pressure and temperature, the governing equations

(5)–(8) may be written in non-dimensional form as

du
dx

¼ 0; ð14Þ

d2u
dy2

	 a2

k
u ¼ 1

k
op
ox

; ð15Þ

op
oy

¼ c
DaRe

u; ð16Þ

u
um

¼ o2h
oy2

; ð17Þ

where

a2 ¼ a
Da

ð18Þ

and the dimensionless temperature is such that h ¼
ðT 0 	 T 0

wÞ=DT ðT 0
w being the local wall temperatureÞ.

In the above equations, Da ¼ K1=h2 is the Darcy
number, Re ¼ uh=m the Reynolds number and k ¼ leff=l
the relative viscosity for which the value in the present

study is taken, as a first approximation, equal to unity

(i.e., leff � l).
Eliminating the pressure from Eqs. (15) and (16) in

the usual way and making use of Eq. (14), one may have

d3u
dy3

	 a2
du
dy

¼ 0: ð19Þ
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The boundary conditions (10) and (11) become

y ¼ 0 : du
dy

¼ 0; dh
dy

¼ 0; ð20Þ

y ¼ 1 : u ¼ 0; h ¼ 0: ð21Þ

Using the hydrodynamic conditions (20) and (21), the

resolution of Eq. (19) yields the velocity distribution

expressed as

u ¼ a½cosh a 	 coshðayÞ
a cosh a 	 sinh a

: ð22Þ

It is clear that the bulk mean velocity u0m defined as
u0m ¼ ð1=½.ðh� 1ÞÞ

R h
0

.u0 dy0 is calculated in dimension-
less terms by

um ¼
Z 1

0

udy; ð23Þ

which equals to unity, using Eq. (22).

Taking into account Eqs. (22) and (23) and making

use of boundary conditions for h, Eq. (17) can be inte-
grated to give the following fully developed temperature

profile:

h ¼ 1

aða cosh a 	 sinh aÞ

� a2

2
ðy2

�
	 1Þ cosh a 	 coshðayÞ þ cosh a

�
: ð24Þ

The average wall friction fRe may be considered on the
channel centerline at ðy ¼ 0Þ such that

fRe ¼ fReðy ¼ 0Þ ¼ 2½fReðy ¼ 	1Þ þ fReðy ¼ þ1Þ;
ð25Þ

where

fReðy ¼ �1Þ ¼ sw
1
2
.u2

uh
m
¼ �2 du

dy

����
y¼�1

; ð26Þ

where the plus and minus signs correspond to the lower

ðy ¼ 	1Þ and the upper ðy ¼ þ1Þ walls, respectively.
Hence, from Eq. (22), the average wall friction can be

deduced as

fRe ¼ 8a2 sinh a
a cosh a 	 sinh a

: ð27Þ

The substitution of Eq. (22) into Eqs. (15) and (16) then

gives directly the pressure variations as follows:

	 op
ox

¼ a3 cosh a
a cosh a 	 sinh a

ð28Þ

and

op
oy

¼ c
DaRe

a½cosh a 	 coshðayÞ
a cosh a 	 sinh a

ð	16 y6 1Þ: ð29Þ

One can notice immediately that, although both the pres-

sure gradients depend strongly upon anisotropic para-

meters, it is established that ðop=ox � op=oyÞ, since
the flow is fully developed along the horizontal axis

ðx-directionÞ. So, the total pressure loss for the devel-
oping flow in the porous duct is

DpðxÞ ¼ a3 cosh a
a cosh a 	 sinh a

x: ð30Þ

Moreover, it is seen that, when the porous matrix is

isotropic in permeability (i.e., K� ¼ 1 ðc ¼ 0Þ), the pres-
sure gradient in the vertical direction becomes zero and

consequently, op=ox ¼ dp=dx, as shown by many au-
thors.

Making use of Eqs. (27) and (30), the criterion of the

existence of the fully developed flow follows from the

fact that the total pressure drop can be written as

Dp ¼ a coth a
8

fRex: ð31Þ

Far from the entrance of the channel, the temperature of

the porous medium will be the same as that of the walls

ðT 0
wÞ. However, for any finite length and fully developed

fields, an invariant local Nusselt number exists (see, for

example, [11]). The heat transfer results are given in

terms of the Nusselt number for fully developed flow as

Nu ¼ 4
oT 0=oy0
� 	

y0¼h

T 0
m 	 T 0

w

¼ 4R 1
0
ðu=umÞhdy

ð32Þ

which becomes, using Eqs. (22) and (24), after integra-

tion

Nu ¼ 48aða cosh a 	 sinh aÞ2

2aða2 	 9Þ þ 15 sinhð2aÞ þ 2aða2 	 6Þ coshð2aÞ :

ð33Þ

This result is similar to that found by Nakayama et al.

[5] for an isotropic porous situation in which the pa-

rameter a is not defined in the same manner.
Two cases of interest will be considered, one with

a � 1 and the other with a � 1.

Case 1: The high porosity media, a � 1ða � DaÞ.
This case corresponds to a weaker anisotropic porous

situation for which the resistance resulting from the

boundary effects is predominant with respect to that due

to the solid matrix, as Da ! 1 when a ! 0. This situ-

ation approaches to the fluid medium case in which the

anisotropic effects of the porous are irrelevant. In this

limit, the velocity is given by

u ¼ 3
2
1



	 y2

2

�
1



	 a2

15

�
ð34Þ

and

lim
a!0

u ¼ 3
2
1



	 y2

2

�
: ð35Þ
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From Eq. (27), the average wall friction becomes

fRe ¼ 24 1
�

þ a
6

�
1



	 a2

10

�
: ð36Þ

Consequently, as a goes to zero, the limit of the average
wall friction is written as

lim
a!0

fRe ¼ 24: ð37Þ

The pressure gradient and its limit, as a goes to zero, are

	 op
ox

¼ 3 1



þ a2

2

�
1



	 a2

10

�
ð38Þ

and

lim
a!0



	 op

ox

�
¼ 3: ð39Þ

Case 2: The low porosity media, a � 1ðDa � aÞ.
This case corresponds to a pure Darcy medium situa-

tion in which the anisotropic effects are predominant, as

Da ! 0 when a ! 1. Then, the velocity distribution is
expressed by

u ¼ a
a 	 1 ½1	 e

	að1	yÞ: ð40Þ

The average friction and the pressure gradient are given

by

fRe � 8a ð41Þ

and

	 op
ox

� a2: ð42Þ

It is readily found that, as a goes to infinity, the con-
vective heat transfer rate through the channel is calcu-

lated by

Nu � 12e2a

2þ e2a ð43Þ

and

lim
a!1

Nu ¼ 12: ð44Þ

3. Results and discussion

Figs. 2(a) and (b) show, respectively, the horizontal

velocity and temperature distributions for only half of

the porous duct width when Da ¼ 4� 10	3, u ¼ 0� and
various values of K�, using Eq. (22). For each value of

K�, Fig. 2(a) indicates that the velocity at the wall is

zero, because according to Brinkman’s model, the vis-

cous forces are accounted for and the no-slip condition

on the solid wall is satisfied. The velocity increases to a

maximum on the channel centerline, the position of

which depends upon the value of K� and drops back to

zero at the opposite wall, because of the reason ex-

plained earlier. Fig. 2(a) shows that the intensity of the

convective flow is promoted with respect to that of an

isotropic porous medium corresponding to ðK� ¼ 1Þ,
when the permeability ratio K� is made smaller than one

(i.e., K� ¼ 10	1). This is expected, because for a given
Dað< 1Þ, i.e., K1, a value of K� smaller than unity, when

u ¼ 0�, corresponds to an increase of the permeability
K2 in the horizontal direction, thus promoting the con-
vective circulation within the channel. Naturally, the

reverse trend is achieved when K� is made large than

unity (i.e., K� ¼ 10). Due to the weakness of the strength
of the convection motion, the curve is seen to be chan-

neled along the heated horizontal walls, such that thin

hydrodynamic boundary layers can be observed in the

neighborhood of these walls. The effects of varying K�

on temperature profiles are illustrated in Fig. 2(b). It is

Fig. 2. (a) Effects of the permeability ratio K� on velocity profile for Da ¼ 4� 10	3 and u ¼ 0�. (b) Effects of the permeability ratio K�

for on temperature profile for Da ¼ 4� 10	3 and u ¼ 0�.
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noticed that the temperature fields have the same be-

havior described previously for the velocity distribution,

revealing that the effect of varying convection in the

channel depends strongly on the anisotropic parameters

of the porous matrix saturated. As expected, the effect of

varying convection causes an increase of the tempera-

ture induced within the channel during the heating

process, as K� is made smaller than unity. On the other

hand, the convection is favored as the permeability K2 in
the horizontal direction increases when u ¼ 0�.
The effects of varying u, the inclination of the prin-

cipal axes on the velocity and temperature profiles

within the porous duct are presented in Figs. 3(a) and

(b), for Da ¼ 10	2 and K� ¼ 0:25 (i.e., K� < 1). Because
of the forced convection, the entrance velocity imposed

forces the circulation of the fully developed flow straight

ahead. Accordingly, the velocity and temperature dis-

tributions become parabolic and almost uniform, indi-

cating that the saturating convective fluid fills almost the

entire section of the channel with a thin boundary layer

at each side. Moreover, the results reveal that the con-

vection motion is maximum when u ¼ 0� and minimum
when u ¼ 90�. For ðK� > 1Þ, the results (not presented
here) indicate that the circulation of the convective flow

is now maximum when u ¼ 90� and minimum when

u ¼ 0�. Thus, the convection motion is maximum when
the orientation of the principal axis with lower perme-

ability of the anisotropic porous medium is parallel to

the gravity. Similar results have been qualitatively re-

ported by Degan and Vasseur [8,12].

In Fig. 4, the average wall friction fRe is plotted as a
function of Darcy number Da within the porous channel

for u ¼ 45� and various values of K�. Fig. 4 shows that

the average wall friction is enhanced when K� > 1 (i.e.,
K� ¼ 5) and weakened when K� < 1 (i.e., K� ¼ 10	2), in
comparison with that of an isotropic porous case for

which ðK� ¼ 1Þ. This behavior can be explained by the

fact that for a fixed value of Da (i.e., K1Þ, an increase
(decrease) in K� corresponds to a decrease (increase) of

the permeability K2, i.e., to a weaker (stronger) con-
vective flow, as discussed previously. Darcy’s model for

the average wall friction predicted by Eq. (41) and

plotted in dashed lines in Fig. 4 starts to deviate from

Brinkman’s model at a Darcy number that decreases as

K� is made weaker. When the Darcy number is made

large enough, the results indicate that the curves, for a

given value of K� tend asymptotically toward the pure

fluid situation predicted by Eq. (37). The Darcy number

required to reach this limit increases as the value of K�

is made higher. For example, this happens at Da �
2� 10	1 when K� ¼ 10	2, and Da � 2 when K� ¼ 5.
The gradient of the pressure parameter, ð	op=oxÞ, is

plotted in Fig. 5 as a function of Da for K� ¼ 2� 10	1
and for various values of u. It is observed clearly that,
when Da is small enough, ð	op=oxÞ tends asymptoti-
cally toward a value that depends on K� and u. The limit

Fig. 3. (a) Effects of the anisotropy angle u on velocity profile for Da ¼ 10	2 and K� ¼ 0:25. (b) Effects of the anisotropy angle u on
temperature profile for Da ¼ 10	2 and K� ¼ 0:25.

Fig. 4. Effect of the Darcy number Da on the average friction

wall for u ¼ 45� and various values of K�.
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ðDa ! 0Þ corresponds to a pure Darcy medium for

which the pressure variation modeled by Eq. (42) is

presented as asymptotic curves (dashed lines) for

Brinkman’s model (solid curves) in Fig. 5. In this lim-

iting case, the effects of varying anisotropic parameters

of the porous matrix are observed significant, since

ð	op=oxÞ decreases as u is made larger. As expected

from Eq. (38), when the permeability of the porous

medium Da (i.e., K1) is increased, the boundary fric-
tional resistance becomes gradually more important and

adds to the bulk frictional drag induced by the solid

matrix to slow the convection motion. As a result, the

effects of varying the anisotropy of the porous medium

become less and less important and the present solution

approaches that for a pure viscous fluid, Eq. (39). This

situation is reached at a Darcy number that decreases as

the value of u is made higher. For example, when

u ¼ 0�, Da ’ 0:3, and when u ¼ 90�, Da ’ 2.
In Fig. 6 the Nusselt number Nu, given by Eq. (33) is

plotted as a function of Da for u ¼ 0� and various val-
ues of K�. From Fig. 5, it is clear that, when Da is small

enough, the convective heat transfer increases as K� is

made larger. Accordingly, when K� ¼ 1, the result is in
agreement with that obtained by Nakayama et al. [5] for

the isotropic porous situation. For the pure Darcy

medium ðDa ! 0Þ, Nu tends asymptotically toward a

constant value (not represented here) that does not de-

pend on K� and u. As expected from Eq. (43) predicting
the heat transfer rate for this limiting case, it is observed

that Nu ! 12, since a ! 1 (when Da ! 0). As Da in-

creases, the effect of anisotropy of the porous matrix

becomes less and less important, and the heat transfer

within the channel drops progressively toward a con-

stant value. When Da is high enough, i.e., when the

resistance resulting from the boundary effects is pre-

dominant with respect to that due to the solid matrix,

the present solution approaches that for a pure viscous

fluid ðNu � 8:25Þ and this, independently of the aniso-
tropy of the porous medium. This situation is reached at

a Darcy number that increases as K� is made larger. For

example, for K� ¼ 0:25, Da ’ 1:25 and for K� ¼ 5,
Da ’ 11.
Fig. 7 shows the effects of varying the anisotropy

orientation u and Darcy number Da on the Nusselt

number for K� ¼ 0:25 and K� ¼ 5. The results indicate
that Nu depends strongly on the anisotropy orientation

u of the porous medium. For K� ¼ 0:25, the convective
heat transfer is seen to be maximum at 90�, i.e., when the
permeability in the vertical direction is maximum, but is

minimum at u ¼ 0� and 180�, i.e., when the permeability
in the vertical direction is minimum. The inverse is true

for K� ¼ 5, for which the heat transfer is now minimum
at 90� and maximum at u ¼ 0� and 180�. The fact that
for K� > 1 ðK� < 1Þ, Nu is minimum (maximum) at

u ¼ 90� and maximum (minimum) at u ¼ 0� and 180�

Fig. 5. Effect of the Darcy number Da on the pressure gradient

for K� ¼ 2� 10	1 and various values of u.
Fig. 6. Effect of the Darcy number Da on the Nusselt number

for u ¼ 0� and various values of K�.

Fig. 7. Effect of the anisotropic angle u and the Darcy number
on the Nusselt number for K� ¼ 0:25 and K� ¼ 5.
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can be easily deduced from the first and second deriva-

tives of Nu with respect to u (Eq. (33)). Thus, it follows
from these results that a maximum (minimum) convec-

tive heat transfer is reached when the orientation of the

principal axis with higher permeability of the anisotropic

porous channel is parallel (perpendicular) to the gravity.

A similar result has been found while studying convec-

tive heat transfer in a vertical anisotropic porous cavity

heated from the side isothermally or by a constant heat

flux [12–14] . As expected, when Da is small enough, the

Darcy’s law is represented by a dashed line on the graph.

In this limit, the heat transfer is constant ðNu � 12Þ and
independent of u. Upon increasing Da, it is seen that,

for the reason explained earlier, the heat transfer drops

progressively and becomes less and less affected by u.
For example, the case with Da ¼ 1 corresponds to a pure
fluid situation for which Nu � 8:25.

4. Conclusion

The purpose in this work was to study the influence

of hydrodynamic anisotropy on laminar and fully de-

veloping forced convective flow in a parallel-plate hori-

zontal porous channel with heat boundary condition.

The porous medium is assumed anisotropic in perme-

ability with its principal axes inclined with respect to

the gravity force. The generalized Brinkman-extended

Darcy model, which allows the no-slip boundary con-

dition, to be satisfied, is used in the formulation of the

problem. Detailed results for the flow fields, temperature

distribution and heat transfer rate have been presented

in closed form. From this study, the main results are:

1. Both the permeability ratio K� and the inclination

angle u of the principal axes have a strong influence
on the forced thermal convection within the aniso-

tropic porous channel.

2. For the low porosity media ðDa ! 0Þ, the flow field
resembles to that given by a pure Darcy analysis

for which the anisotropic effects are predominant.

In the limit for high porosity media ðDa ! 1Þ, the
viscous effects are important and the results become

less and less affected by anisotropic parameters.

3. The heat transfer rate within the porous channel is in-

creased as K� is made larger when u ¼ 0� (i.e., when
the permeability in the vertical direction is greater

than that in the horizontal direction).

4. A maximum (minimum) heat transfer rate through

the porous channel is obtained when the porous ma-

trix is oriented in such a way that the principal axis

with higher permeability is parallel (perpendicular)

to the gravity.
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